Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37960132

RESUMO

A total of 219 rhizobial strains isolated from peanut grown in soils from six peanut croplands in Zhengyang county, Henan Province, were typed by PCR-RFLP of IGS sequences. Their phylogenetic relationships were refined on representative strains using sequence analyses of 16S rRNA genes, housekeeping genes (atpD, recA, glnII) and symbiosis genes (nodA, nodC and nifH). The 219 rhizobial isolates were classified into 13 IGS types, and twenty representatives were defined within eight Bradyrhizobium genospecies: B. guangdongense covering 5 IGS types (75.2% of total isolates), B. guangzhouense (2 IGS types, 2.7% total isolates), B. zhengyangense (1 IGS type, 11.3% total isolates) and five novel genospecies (5 IGS types, 0.9 to 3.2% total isolates). All representative strains had identical nodA, nodC and nifH sequences except for one nifH sequence. With this one exception, these sequences were identical to those of the type strains of Bradyrhizobium species and several Bradyrhizobium genospecies isolated from peanut in different regions of China. The nodC sequences of all strains showed < 67% similarity to the closest strains on the Genbank database indicating that they are representative of a novel Bradyrhiobium symbiovar. This study has shown that (1) diverse Bradyrhizobium spp. with similar symbiosis genes nodulate peanut in different regions of China. (2) Horizontal transfer of genes involved in nodulating peanut is common between Bradyrhizobium species in soils used to grow the crop in China. (3) The strains studied here are representative of a novel Bradyrhizobium symbiovar that nodulates peanut in China. We propose the name sv. arachis for this novel symbiovar indicating that the strains were isolated from Arachis hypogaea. Results here have practical implications in relation to the selection of rhizobial inoculants for peanut in China.

4.
Photosynth Res ; 155(2): 127-137, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36418758

RESUMO

The photon costs of photoreduction/assimilation of nitrate (NO3-) into organic nitrogen in shoots and respiratory driven NO3- and NH4+ assimilation in roots are compared for terrestrial vascular plants, considering associated pH regulation, osmotic and ontogenetic effects. Different mechanisms of neutralisation of the hydroxyl (OH-) ion necessarily generated in shoot NO3- assimilation are considered. Photoreduction/assimilation of NO3- in shoots with malic acid synthesis and either accumulation of malate in leaf vacuoles or transport of malate to roots and catabolism there have a similar cost which is around 35% less than that for root NO3- assimilation and around 20% less than that for photoreduction/assimilation of NO3-, oxalate production and storage of Ca oxalate in leaf vacuoles. The photon cost of root NH4+ assimilation with H+ efflux to the root medium is around 70% less than that of root NO3- assimilation. These differences in photon cost must be considered in the context of the use of a combination of locations of NO3- assimilation and mechanisms of acid-base regulation, and a maximum of 4.9-9.1% of total photon absorption needed for growth and maintenance that is devoted to NO3- assimilation and acid-base regulation.


Assuntos
Malatos , Nitratos , Malatos/metabolismo , Nitratos/metabolismo , Transporte Biológico , Concentração de Íons de Hidrogênio , Raízes de Plantas , Nitrogênio/metabolismo
5.
Syst Appl Microbiol ; 45(1): 126291, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34968802

RESUMO

Faba bean (Vicia faba L.) is a major introduced grain-legume crop cultivated in China. In this study, rhizobia that nodulated faba bean grown in soils from three sites in North China (Hebei Province) were isolated and characterized. Firstly, isolates were categorized into genotypes by ribosomal IGS PCR-RFLP analysis, then representatives of the different IGS genotypes were further identified by phylogenetic analyses of 16S rRNA, housekeeping (atpD, recA) and nodulation (nodC) gene sequences. Rhizobial distribution based on the IGS genotype was related to the different soil physicochemical features by redundancy analysis. IGS typing and phylogenetic analyses of 16S rRNA and concatenated housekeeping gene sequences affiliated the 103 rhizobial strains isolated into four Rhizobium species/genospecies. A total of 69 strains of 3 IGS types were assigned to R. sophorae, 20 isolates of 5 IGS types to R. changzhiense and 9 isolates of 3 IGS types to R. indicum. The representative strain of the five remaining isolates (1 IGS type) was clearly separated from all Rhizobium type strains and was most closely related to defined genospecies according to the recently described R. leguminosarum species complex. Rhizobium sophorae strains (67% of total isolates) were common in all sites and shared an identical nodC sequence typical of faba bean symbionts belonging to symbiovar viciae. In this first study of rhizobia nodulating faba bean in Hebei Province, China, R. sophorae was found to be the dominant symbiont in contrast to other countries.


Assuntos
Rhizobium , Vicia faba , China , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Rhizobium/genética , Nódulos Radiculares de Plantas , Análise de Sequência de DNA , Simbiose
6.
Microb Ecol ; 84(2): 556-564, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34528105

RESUMO

Henan Province is a major area of peanut production in China but the rhizobia nodulating the crop in this region have not been described. A collection of 217 strains of peanut rhizobia was obtained from six field sites across four soil types in Henan Province, North China, by using peanut as a trap host under glasshouse conditions. The 217 strains separated into 8 distinct types on PCR-RFLP analysis of their IGS sequences. Phylogenetic analysis of the 16S rRNA, recA, atpD, and glnII genes of 11 representative strains of the 8 IGS types identified Bradyrhizobium guangdongense, B. ottawaense and three novel Bradyrhizobium genospecies. Bradyrhizobium guangdongense was dominant, accounting for 75.0% of the total isolates across the field sites while B. ottawaense covered 5.1% and the three novel Bradyrhizobium genospecies 4.1 to 8.8% of the total. The symbiosis-related nodA and nifH gene sequences were not congruent with the core genes on phylogenetic analysis and separated into three groups, two of which were similar to sequences of Bradyrhizobium spp. isolated from peanut in south-east China and the third identical to that of B. yuanmingense isolated from Lespedeza cuneata in northern China. A canonical correlation analysis between the distribution of IGS genotypes and soil physicochemical characteristics and climatic factors indicated that the occurrence of IGS types/species was mainly associated with soil pH and available phosphorus.


Assuntos
Bradyrhizobium , Fabaceae , Rhizobium , Arachis , Bradyrhizobium/genética , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Rhizobium/genética , Nódulos Radiculares de Plantas , Análise de Sequência de DNA , Solo , Simbiose
7.
Physiol Plant ; 170(1): 40-45, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32198758

RESUMO

Bloom et al. proposed that rising atmospheric CO2 concentrations 'inhibit malate production in chloroplasts and thus impede assimilation of nitrate into protein of C3 plants, a phenomenon that will strongly influence primary productivity and food security under the environmental conditions anticipated during the next few decades'. Previously we argued that the weight of evidence in the literature indicated that elevated atmospheric [CO2 ] does not inhibit NO3 - assimilation in C3 plants. New data for common bean (Phaseolus vulgaris) and wheat (Triticum aestivum) were presented that supported this view and indicated that the effects of elevated atmospheric [CO2 ] on nitrogen (N) assimilation and growth of C3 vascular plants were similar regardless of the form of N assimilated. Bloom et al. strongly criticised the arguments presented in Andrews et al. Here we respond to these criticisms and again conclude that the available data indicate that elevated atmospheric [CO2 ] does not inhibit NO3 - assimilation of C3 plants. Measurement of the partitioning of NO3 - assimilation between root and shoot of C3 species under different NO3 - supply, at ambient and elevated CO2 would determine if their NO3 - assimilation is inhibited in shoots but enhanced in roots at elevated atmospheric CO2 .


Assuntos
Dióxido de Carbono , Phaseolus , Nitratos , Nitrogênio , Raízes de Plantas , Triticum
8.
J Exp Bot ; 71(7): 2351-2361, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31679036

RESUMO

By modifying two genes involved in lipid biosynthesis and storage [cysteine oleosin (cys-OLE)/diacylglycerol O-acyltransferase (DGAT)], the accumulation of stable lipid droplets in perennial ryegrass (Lolium perenne) leaves was achieved. Growth, biomass allocation, leaf structure, gas exchange parameters, fatty acids, and water-soluble carbohydrates were quantified for a high-expressing cys-OLE/DGAT ryegrass transformant (HL) and a wild-type (WT) control grown under controlled conditions with 1-10 mM nitrogen (N) supply at ambient and elevated atmospheric CO2. A dramatic shift in leaf carbon (C) storage occurred in HL leaves, away from readily mobilizable carbohydrates and towards stable lipid droplets. HL exhibited an increased growth rate, mainly in non-photosynthetic organs, leading to a decreased leaf mass fraction. HL leaves, however, displayed an increased specific leaf area and photosynthetic rate per unit leaf area, delivering greater overall C capture and leaf growth at high N supply. HL also exhibited a greater photosynthesis response to elevated atmospheric CO2. We speculate that by behaving as uniquely stable microsinks for C, cys-OLE-encapsulated lipid droplets can reduce feedback inhibition of photosynthesis and drive greater C capture. Manipulation of many genes and gene combinations has been used to increase non-seed lipid content. However, the cys-OLE/DGAT technology remains the only reported case that increases plant biomass. We contrast cys-OLE/DGAT with other lipid accumulation strategies and discuss the implications of introducing lipid sinks into non-seed organs for plant energy homeostasis and growth.


Assuntos
Carbono , Lolium , Dióxido de Carbono , Lipídeos , Nitrogênio , Fotossíntese , Folhas de Planta
9.
Int J Syst Evol Microbiol ; 69(7): 1852-1863, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31140963

RESUMO

Herein the members of the Subcommittee on Taxonomy of Rhizobia and Agrobacteria of the International Committee on Systematics of Prokaryotes review recent developments in rhizobial and agrobacterial taxonomy and propose updated minimal standards for the description of new species (and genera) in these groups. The essential requirements (minimal standards) for description of a new species are (1) a genome sequence of at least the proposed type strain and (2) evidence for differentiation from other species based on genome sequence comparisons. It is also recommended that (3) genetic variation within the species is documented with sequence data from several clearly different strains and (4) phenotypic features are described, and their variation documented with data from a relevant set of representative strains. Furthermore, it is encouraged that information is provided on (5) nodulation or pathogenicity phenotypes, as appropriate, with relevant gene sequences. These guidelines supplement the current rules of general bacterial taxonomy, which require (6) a name that conforms to the International Code of Nomenclature of Prokaryotes, (7) validation of the name by publication either directly in the International Journal of Systematic and Evolutionary Microbiology or in a validation list when published elsewhere, and (8) deposition of the type strain in two international culture collections in separate countries.


Assuntos
Agrobacterium/classificação , Rhizobium/classificação , Terminologia como Assunto , Guias como Assunto
10.
J Exp Bot ; 70(2): 683-690, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30403798

RESUMO

Atmospheric carbon dioxide concentration ([CO2]) increased from around 280 ppm in 1750 to 400 ppm in 2016 and is likely to continue to increase throughout this century. It has been argued that wheat, Arabidopsis, and C3 plants in general respond more positively to elevated atmospheric [CO2] under ammonium (NH4+) nutrition than under nitrate (NO3-) nutrition because elevated CO2 inhibits their photoreduction of NO3- and hence reduces their total plant nitrogen (N) assimilation and ultimately growth. Here, it is argued that the weight of evidence in the literature indicates that elevated atmospheric [CO2] does not inhibit NO3- assimilation and growth of C3 vascular plants. New data for common bean and wheat support this view and indicate that the effects of elevated atmospheric [CO2] on N assimilation and growth of C3 vascular plants will be similar regardless of the form of N assimilated.


Assuntos
Compostos de Amônio/metabolismo , Dióxido de Carbono/administração & dosagem , Nitratos/metabolismo , Phaseolus/efeitos dos fármacos , Triticum/efeitos dos fármacos , Phaseolus/crescimento & desenvolvimento , Phaseolus/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
11.
Int J Syst Evol Microbiol ; 69(1): 146-152, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30457516

RESUMO

Five strains of Gram-stain-negative, rod-shaped bacteria were isolated from Carmichaelia and Montigena root nodules. Based on 16S rRNA gene phylogeny, they were shown to belong to the genus Mesorhizobium, and to be most closely related to Mesorhizobium jarvisii ATCC 33669T (100-99.6 % sequence similarity), Mesorhizobium huakuii IAM 14158T (99.9-99.6 %), Mesorhizobium japonicum MAFF303099T (99.8-99.6 %) and Mesorhizobium erdmanii USDA 3471T (99.8-99.5 %). Additionally, the strains formed distinct groups based on housekeeping gene analysis and were most closely related to M. jarvisii ATCC 33669T (89.6-89.5 and 97.6-97.3 % sequence similarity for glnII and recA, respectively), M. erdmanii USDA 3471T (94.3-94.0 and 94.9-94.1 %), M. japonicum MAFF303099T (90.0-89.9 and 96.7-96.2 %) and M. huakuii IAM 14158T (89.9-90.0 and 95.4-94.9 %). Chemotaxonomic data supported the assignment of the strains to the genus Mesorhizobium and DNA-DNA hybridizations, average nucleotide identity analysis, matrix-assisted laser desorption ionization time-of-flight MS analysis, physiological and biochemical tests differentiated them genotypically and phenotypically from their nearest neighbouring species. Therefore, these strains are considered to represent a novel species, for which the name Mesorhizobium carmichaelinearum sp. nov. is proposed. The type strain is ICMP 18942T (=MonP1N1T=LMG 28414T).


Assuntos
Fabaceae/microbiologia , Mesorhizobium/classificação , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Mesorhizobium/isolamento & purificação , Nova Zelândia , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
12.
Artigo em Inglês | MEDLINE | ID: mdl-33661090

RESUMO

Three fast-growing rhizobial strains isolated from effective nodules of common vetch (Vicia sativa L.) were characterized using a polyphasic approach. All three strains were assigned to the genus Rhizobium on the basis of the results of 16S rRNA gene sequence analysis. Phylogenetic analysis based on concatenated atpD-recA genes separated the strains into a distinct lineage represented by WYCCWR 11279T, which showed average nucleotide identity values of 95.40 and 93.61 % with the most similar phylogenetic type strains of Rhizobium sophorae CCBAU 03386T and Rhizobium laguerreae FB TT, respectively. The digital DNA-DNA hybridization relatedness values between WYCCWR 11279T and the closest related type strains were less than 70 %. Therefore, a novel rhizobial species is proposed, Rhizobium changzhiense sp. nov., and strain WYCCWR 11279T (=HAMBI 3709T=LMG 31534T) is designated as the type strain for the novel species.

13.
Genes (Basel) ; 9(7)2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29954096

RESUMO

Rhizobial symbiosis genes are often carried on symbiotic islands or plasmids that can be transferred (horizontal transfer) between different bacterial species. Symbiosis genes involved in horizontal transfer have different phylogenies with respect to the core genome of their ‘host’. Here, the literature on legume⁻rhizobium symbioses in field soils was reviewed, and cases of phylogenetic incongruence between rhizobium core and symbiosis genes were collated. The occurrence and importance of horizontal transfer of rhizobial symbiosis genes within and between bacterial genera were assessed. Horizontal transfer of symbiosis genes between rhizobial strains is of common occurrence, is widespread geographically, is not restricted to specific rhizobial genera, and occurs within and between rhizobial genera. The transfer of symbiosis genes to bacteria adapted to local soil conditions can allow these bacteria to become rhizobial symbionts of previously incompatible legumes growing in these soils. This, in turn, will have consequences for the growth, life history, and biogeography of the legume species involved, which provides a critical ecological link connecting the horizontal transfer of symbiosis genes between rhizobial bacteria in the soil to the above-ground floral biodiversity and vegetation community structure.

14.
Genes (Basel) ; 9(3)2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29538303

RESUMO

The legume tribe Genisteae comprises 618, predominantly temperate species, showing an amphi-Atlantic distribution that was caused by several long-distance dispersal events. Seven out of the 16 authenticated rhizobial genera can nodulate particular Genisteae species. Bradyrhizobium predominates among rhizobia nodulating Genisteae legumes. Bradyrhizobium strains that infect Genisteae species belong to both the Bradyrhizobium japonicum and Bradyrhizobium elkanii superclades. In symbiotic gene phylogenies, Genisteae bradyrhizobia are scattered among several distinct clades, comprising strains that originate from phylogenetically distant legumes. This indicates that the capacity for nodulation of Genisteae spp. has evolved independently in various symbiotic gene clades, and that it has not been a long-multi-step process. The exception is Bradyrhizobium Clade II, which unlike other clades comprises strains that are specialized in nodulation of Genisteae, but also Loteae spp. Presumably, Clade II represents an example of long-lasting co-evolution of bradyrhizobial symbionts with their legume hosts.

15.
Genome Announc ; 5(43)2017 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-29074646

RESUMO

We report here the complete genome sequence of Mesorhizobium sophorae ICMP 19535T This strain was isolated from Sophora microphylla root nodules and can nodulate and fix nitrogen with this host and also with Sophora prostrata, Sophora longicarinata, and Clianthus puniceus The genome consists of 8.05 Mb.

16.
Int J Mol Sci ; 18(4)2017 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-28346361

RESUMO

Most species in the Leguminosae (legume family) can fix atmospheric nitrogen (N2) via symbiotic bacteria (rhizobia) in root nodules. Here, the literature on legume-rhizobia symbioses in field soils was reviewed and genotypically characterised rhizobia related to the taxonomy of the legumes from which they were isolated. The Leguminosae was divided into three sub-families, the Caesalpinioideae, Mimosoideae and Papilionoideae. Bradyrhizobium spp. were the exclusive rhizobial symbionts of species in the Caesalpinioideae, but data are limited. Generally, a range of rhizobia genera nodulated legume species across the two Mimosoideae tribes Ingeae and Mimoseae, but Mimosa spp. show specificity towards Burkholderia in central and southern Brazil, Rhizobium/Ensifer in central Mexico and Cupriavidus in southern Uruguay. These specific symbioses are likely to be at least in part related to the relative occurrence of the potential symbionts in soils of the different regions. Generally, Papilionoideae species were promiscuous in relation to rhizobial symbionts, but specificity for rhizobial genus appears to hold at the tribe level for the Fabeae (Rhizobium), the genus level for Cytisus (Bradyrhizobium), Lupinus (Bradyrhizobium) and the New Zealand native Sophora spp. (Mesorhizobium) and species level for Cicer arietinum (Mesorhizobium), Listia bainesii (Methylobacterium) and Listia angolensis (Microvirga). Specificity for rhizobial species/symbiovar appears to hold for Galega officinalis (Neorhizobium galegeae sv. officinalis), Galega orientalis (Neorhizobium galegeae sv. orientalis), Hedysarum coronarium (Rhizobium sullae), Medicago laciniata (Ensifer meliloti sv. medicaginis), Medicago rigiduloides (Ensifer meliloti sv. rigiduloides) and Trifolium ambiguum (Rhizobium leguminosarum sv. trifolii). Lateral gene transfer of specific symbiosis genes within rhizobial genera is an important mechanism allowing legumes to form symbioses with rhizobia adapted to particular soils. Strain-specific legume rhizobia symbioses can develop in particular habitats.


Assuntos
Fabaceae/microbiologia , Rhizobium/fisiologia , Simbiose , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Bradyrhizobium/classificação , Bradyrhizobium/genética , Bradyrhizobium/fisiologia , Cupriavidus/classificação , Cupriavidus/fisiologia , Fabaceae/metabolismo , Filogenia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Rhizobium/classificação , Rhizobium/genética
17.
Int J Syst Evol Microbiol ; 66(2): 786-795, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26610329

RESUMO

In total, 31 strains of Gram-stain-negative, rod-shaped bacteria were isolated from Sophora root nodules and authenticated as rhizobia on this host. Based on 16S rRNA gene phylogeny, they were shown to belong to the genus Mesorhizobium, with the representative strains ICMP 19560T, ICMP 19523T, ICMP 19535T, ICMP 19545T and ICMP 19512T being related most closely to Mesorhizobium sangaii SCAU7T (99.9-99.6 % similarity), Mesorhizobium cantuariense ICMP 19515T (99.7-99.6 %) and Mesorhizobium ciceri UMP-CA7T (99.7-99.5 %). Additionally, the novel strains formed distinct groups based on housekeeping gene sequence analysis and were closely related to Mesorhizobium waimense ICMP 19557T (93.5-94.9, 92.5-95.6 and 94.2-96.0 %), M. cantuariense ICMP 19515T (93.1-97.7, 93.5-95.4 and 94.8-96.8 %) and M. ciceri UMP-CA7T (93.2-97.2, 94.6-96.8 and 95.5-97.3 %) for glnII, recA and rpoB, respectively. Chemotaxonomic data supported the assignment of the strains to the genus Mesorhizobium, and DNA-DNA hybridizations, matrix-assisted laser desorption/ionization time-of-flight MS analysis, enterobacterial repetitive intergenic consensus PCR, physiological and biochemical tests allowed the genotypic and phenotypic differentiation from their nearest neighbouring species. Therefore, these strains represent five novel species for which the names Mesorhizobium calcicola sp. nov. (type strain ICMP 19560T = LMG 28224T = HAMBI 3609T), Mesorhizobium waitakense sp. nov. (type strain ICMP 19523T = LMG 28227T = HAMBI 3605T), Mesorhizobium sophorae sp. nov. (type strain ICMP 19535T = LMG 28223T = HAMBI 3606T), Mesorhizobium newzealandense sp. nov. (type strain ICMP 19545T = LMG 28226T = HAMBI 3607T) and Mesorhizobium kowhaii sp. nov. (type strain ICMP 19512T = LMG 28222T = HAMBI 3603T) are proposed.

18.
Int J Syst Evol Microbiol ; 65(12): 4716-4723, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26410793

RESUMO

Seven strains, ICMP 19430T, ICMP 19429, ICMP 19431, WSM4637, WSM4638, WSM4639 and WSM4640, were isolated from nitrogen-fixing nodules on roots of the invasive South African legume Dipogon lignosus (subfamily Papilionoideae, tribe Phaseoleae) in New Zealand and Western Australia, and their taxonomic positions were investigated by using a polyphasic approach. All seven strains grew at 10-37 °C (optimum, 25-30 °C), at pH 4.0-9.0 (optimum, pH 6.0-7.0) and with 0-2 % (w/v) NaCl (optimum growth in the absence of NaCl). On the basis of 16S rRNA gene sequence analysis, the strains showed 99.0-99.5 % sequence similarity to the closest type strain, Burkholderia phytofirmans PsJNT, and 98.4-99.7 % sequence similarity to Burkholderia caledonica LMG 19076T. The predominant fatty acids were C18 : 1ω7c (21.0 % of the total fatty acids in strain ICMP 19430T), C16 : 0 (19.1 %), C17 : 0 cyclo (18.9 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c; 10.7 %) and C19 : 0 cyclov ω8c (7.5 %). The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and several uncharacterized aminophospholipids and phospholipids. The major isoprenoid quinone was Q-8 and the DNA G+C content of strain ICMP 19430T was 63.2 mol%. The DNA­DNA relatedness of the novel strains with respect to the closest neighbouring members of the genus Burkholderia was 55 % or less. On the basis of 16S rRNA and recA gene sequence similarities and chemotaxonomic and phenotypic data,these strains represent a novel symbiotic species in the genus Burkholderia, for which the name Burkholderia dipogonis sp. nov. is proposed, with the type strain ICMP 19430T (=LMG28415T=HAMBI 3637T).


Assuntos
Burkholderia/classificação , Fabaceae/microbiologia , Filogenia , Raízes de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderia/genética , Burkholderia/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Espécies Introduzidas , Dados de Sequência Molecular , Nova Zelândia , Fixação de Nitrogênio , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química , Austrália Ocidental
19.
Int J Syst Evol Microbiol ; 65(10): 3419-3426, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26296780

RESUMO

In total 14 strains of Gram-stain-negative, rod-shaped bacteria were isolated from Sophora longicarinata and Sophora microphylla root nodules and authenticated as rhizobia on these hosts. Based on the 16S rRNA gene phylogeny, they were shown to belong to the genus Mesorhizobium, and the strains from S. longicarinata were most closely related to Mesorhizobium amorphae ACCC 19665T (99.8­99.9 %), Mesorhizobium huakuii IAM 14158T (99.8­99.9 %), Mesorhizobium loti USDA 3471T (99.5­99.9 %) and Mesorhizobium septentrionale SDW 014T (99.6­99.8 %), whilst the strains from S. microphylla were most closely related to Mesorhizobium ciceri UPM-Ca7T (99.8­99.9 %), Mesorhizobium qingshengii CCBAU 33460T (99.7 %) and Mesorhizobium shangrilense CCBAU 65327T (99.6 %). Additionally, these strains formed two distinct groups in phylogenetic trees of the housekeeping genes glnII, recA and rpoB. Chemotaxonomic data, including fatty acid profiles, supported the assignment of the strains to the genus Mesorhizobium and allowed differentiation from the closest neighbours. Results of DNA­DNA hybridizations, MALDI-TOF MS analysis, ERIC-PCR, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of our strains from their closest neighbouring species. Therefore, the strains isolated from S. longicarinata and S. microphylla represent two novel species for which the names Mesorhizobium waimense sp. nov. (ICMP 19557T = LMG 28228T = HAMBI 3608T) and Mesorhizobium cantuariense sp. nov. (ICMP 19515T = LMG 28225T = HAMBI 3604T), are proposed respectively.


Assuntos
Mesorhizobium/classificação , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Sophora/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Mesorhizobium/genética , Mesorhizobium/isolamento & purificação , Dados de Sequência Molecular , Nova Zelândia , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
20.
Syst Appl Microbiol ; 38(2): 91-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25498849

RESUMO

Forty eight rhizobial isolates from New Zealand (NZ) native Sophora spp. growing in natural ecosystems were characterised. Thirty eight isolates across five groups showed greatest similarity to Mesorhizobium ciceri LMG 14989(T) with respect to their 16S rRNA and concatenated recA, glnll and rpoB sequences. Seven isolates had a 16S rRNA sequence identical to M. amorphae ATCC 19665(T) but showed greatest similarity to M. septentrionale LMG 23930(T) on their concatenated recA, glnll and rpoB sequences. All isolates grouped closely together for their nifH, nodA and nodC sequences, clearly separate from all other rhizobia in the GenBank database. None of the type strains closest to the Sophora isolates based on 16S rRNA sequence similarity nodulated Sophora microphylla but they all nodulated their original host. Twenty one Sophora isolates selected from the different 16S rRNA groupings produced N2-fixing nodules on three Sophora spp. but none nodulated any host of the type strains for the related species. DNA hybridisations indicated that these isolates belong to novel Mesorhizobium spp. that nodulate NZ native Sophora species.


Assuntos
Variação Genética , Mesorhizobium/classificação , Mesorhizobium/isolamento & purificação , Nodulação , Raízes de Plantas/microbiologia , Sophora/microbiologia , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , RNA Polimerases Dirigidas por DNA/genética , Glutamato-Amônia Ligase/genética , Humanos , Mesorhizobium/genética , Dados de Sequência Molecular , Nova Zelândia , Filogenia , Raízes de Plantas/fisiologia , RNA Ribossômico 16S/genética , Recombinases Rec A/genética , Análise de Sequência de DNA , Sophora/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...